杏彩彩票登录

杏彩彩票注册

临沂千卉化妆服务部

手机:15092971238 西老师

微信:qh 15092971238

地址:临沂市兰山区兰田步行街富人街二楼20号

网址:http://www.hnjingbo.net

杏彩彩票官网·AI for Science突出重围:被海外巨头围

发布日期:2024-11-21 04:55:29 作者:杏彩彩票官网

  2017年夏天,一趟从北京飞往纽约的国际航班上,峰正在反复比对两组几乎一模一样的数字,以确认它们真的如此接近。

  这两组数字都代表64个水分子在10皮秒内(10的-11次方秒,比一瞬间还短暂)模拟运动的计算结果。其中一组是在1985年用量子力学原理算出来的,消耗了2亿核时,即便在算力发达的今天,也需要大约2000万的计算费用才能实现。另一组就来自峰手里这台笔记本,上面正运行着他与合作者完成的某套算法,因为从上飞机就插着电,大概只消耗了一些航空公司的电费——这可能吗?他甚至觉得自己抄错了。

  下飞机之后,峰立刻写了一封邮件,将模拟的结果发送给自己在普林斯顿大学的导师、中国科学院院士鄂维南。来自远方的回复简洁而有力:“Too good to be true(好得难以置信)。”

  人类团队写的AI算法读懂了微观世界的某种客观规律——这像是一颗投向分子模拟领域的普罗米修斯火种,很多事情将就此被永远改变,但当时没人清晰预见。

  再次回国后,一场老友见面,峰将飞机上发生的故事讲给了自己的北大元培校友,一边从事科技方向投资一边寻找合适创业项目的孙伟杰。

  孙伟杰关注过市面上绝大多数AI项目,早就发现这个行业的共性问题是缺乏Golden Standard(黄金准则)来衡量成果。峰带来的故事是一种认知冲击——如果AI的核心是发现并学习某种规律,其价值等同于它所学到的规律价值,那当今世界还有什么规律的价值高于科学规律?

  用AI来学习和发现科学规律,没错,他们应该做这样一套东西——达成这一共识之后,峰和孙伟杰开始筹划共同创业,他们为新公司取名“深势科技”,致力于用人工智能深度学习解决微观尺度的问题。

  时间快进到2024年GTC大会,英伟达CEO黄仁勋在演讲中谈到了AI领域的三个关键方向,LLM(大语言模型),具身智能,以及AI for Science(科学智能)。

  在前两个领域,OpenAI和Tesla两家美国公司已经形成鲜明主导地位,全球范围内的竞争者均对其亦步亦趋。鲜有人知的是,第三个领域——AI for Science——早在七年前就在鄂维南院士的推动下在东方世界定下根基。

  更加反直觉的在于,过去几年来,AI for Science领域声名在外的两家科技巨头Google DeepMind和微软并未形成实质上的引领地位,而是一直在与那个年轻东方团队相互追赶。

  2017年,在鄂维南院士的带领下,峰与团队合作发布DeePMD,紧接着Google DeepMind完成一套十分相近的技术框架;随后,峰团队做出了DeePWF,一种电子波函数的AI计算方法,次年,DeepMind发布相同方向的解决方案FermiNet;2020年,峰团队再度发布DeePKS,而DeepMind的对标框架DM21在2021年诞生。

  2020年底,在鄂维南、峰等人因DeePMD相关工作获得有高性能计算领域“诺贝尔奖”之称的戈登贝尔奖时,DeepMind AlphaFold-2的工作改变了整个结构生物学领域。而到了2021年底,深势科技成为了全球首家成功复现AlphaFold-2并完全开源训练代码的机构。

  大概只因为AI for Science才刚刚起步,人们无从发现这个前沿科技领域正在上演一场激烈的全球竞逐。

  AI for Science有多重要?任正非曾指出中国的基础科学薄弱,在最基础的科研和工业问题上被“卡着脖子”。中国实体产业已经在新能源汽车、光伏等领域诞生多个全球第一,但回到电池研发层面,仍在基础科学问题上破茧无门。而大量重要科学问题的终极答案都指向微观世界。

  事实上,AI for Science的重要性已经与大国竞争的新局面挂钩。大洋彼岸,在美国白宫一份行政命令要求下,PCAST(美国总统科技顾问委员会)近日撰写了题为《加速研究:利用应对全球挑战》的报告。其中,由知名数学家陶哲轩领衔的一份技术报告概述了AI for Science的潜在影响。

  报告指出,AI将从根本上改变人类进行科学研究的方式。其阐述了AI在材料、半导体设计、气候、物理、生命科学等领域已经做出的改变,并高度总结了AI如何通过提供研究工具来加速科学发现和技术进步,从而性地改变人类解决最紧迫问题的能力。

  这恰恰是深势科技决心投入并试图引领中国产业去突破的问题。成立近六年时间,深势科技已经把当初那颗火种衍生为一套完整的产品框架。用多尺度建模、机器学习和高性能计算去解决微观尺度下的工业设计难题。这件事天然地适合药企、材料研发和科研机构,是真正有可能四两拨千斤的魔法工具。

  但这趟旅程并不完全是一个天之骄子的爽文故事。因为人才难寻,这家AI for Science领域的“中国OpenAI”在创业之初甚至有一半以上的员工是实习生。深势科技在天使轮拿到了1600万人民币融资,听上去不少,但去年由谷歌孵化,并由谷歌创始人挂帅的Sandbox AQ首轮单笔公开融资就已达到5亿美金。孙伟杰说,当他看到海外对手可能是以每年数十亿美为计在投的时候,他知道自己还得做到更好。

  深势科技创始人兼CEO孙伟杰作为深势科技创始人兼首席科学家,峰判断,AIforScience领域的科学大模型正处在GPT-2阶段,这意味着涌现时刻已经不会太远。他对未来的终局想象是无论工业、、合金,还是药物,都能从原子开始生产制造。一个形象的比喻大概就是,原尺度下的“活字印刷术”。

  而作为公司CEO,孙伟杰说,他们的创业出发点是做一家真正源自中国、引领世界的科技公司。他认为一代公司有一代公司的使命,中国已经走过了拿来主义的阶段,这个时代在呼唤更多有底层创新技术的公司。

  问:你们的官网一打开就写着分子模拟未来,为什么要用这句话?什么是分子模拟?

  孙伟杰:分子模拟就是基于物理规律模拟原子、分子这些微观粒子的排布和运动,就好像我们给分子的运动拍了一个视频。我们团队的第一个突破就是在AI助力分子模拟领域,把分子模拟的时间和空间规模提升了上万倍。这样我们就能用分子模拟来研究很多面向未来的新分子、新材料了。

  孙伟杰:因为原子的尺寸甚至小于可见光的波长了。这意味着我们无法用可见光看到它,必须得借助一些非常昂贵的仪器,像电子显微镜,而这些仪器效率又非常低。

  另一个问题则是它动的太快了。对于常见的物质来说,原子间振动的常用时间尺度是是十的负十五次方秒,也就是百万亿分之一秒。刚才过去的一秒钟,它动了一百万亿次。

  比如生命和非生命的界限到底在哪?一个细胞可以是一个生命,但是细胞也是由无生命的原子构成的,那为什么它会变成一个生命体呢?如果我们从最小的地方一点点开始模拟,一个原子,两个原子,三个原子,直到组成蛋白质,组成线粒体,一点点往上加,加到什么样的时候,它突然就有生命了?这是人类的一个终极问题,生命是涌现的,你怎么知道那个界限在哪?

  再比如说,中国目前在电动车和行业已经世界领先,但是我们仍然不完全了解锂枝晶的生长原因。锂枝晶是一种会让锂电池失效的机制,它会在负极界面和电解质界面上形成,这个过程涉及至少数十万个原子在微秒甚至毫秒的时间尺度内发生变化。

  孙伟杰:主要有两种方法,第一种是用第一性原理,基于量子力学来算。它的好处是可以算得准,坏处就是算得非常慢,而且它只能算个几十个几百个原子。

  靠量子力学这样的算法,随原子数量的上升,计算量是三次方指数上升。一百个原子和一万个原子,差的原子数量是一百倍,但是差的计算量是一百万倍。这就导致我们想要算一个真正感兴趣的问题,如果里面有几十万个原子,可能把全球的算力加起来都不够用,这个叫做维数灾难。

  第二种方法就是经验力场,靠归纳。我就简单地把原子间的力抽象成一个化学键,像个皮筋一样。它不那么准,但至少能算,在相当长的历史阶段里面也解决了很多问题。但一旦面临精度很高的体系,就不管用了。

  峰:对,算得快的就不准,或者使用范围非常受限。而这是我们用AI能解决的问题,让精度和效率可以兼得。

  峰:要到我们用光学显微镜能够观察到运动变化的这个尺度。对于生物学来说,可能是到一个细胞层面,我们模拟出来的这个细胞的运动和变化和我们光学上观察的是一致的,我觉得这个时候分子模拟的任务首先从规模上解决了。

  在分子模拟领域有三个终极问题:第一是否所有的元素和构型,第二就是模拟的规模,第三就是模拟的时间尺度。在这三个问题上其实我们基本上未来的路已经比较清楚了,未来两三年之内应该这个领域应该会被颠覆。

  我们研究,比如说一块橡皮泥,为什么它有这种弹性形变?现在是没有原理能够解释的。我们只是观察到了,它一捏可以这样,但我们不知道为什么会这样。

  而当我们有了分子模拟,就有可能通过模拟的方式搞明白背后的原理,这样在我们需要有弹性形变的材料时可以尝试把这个原理使用上去。

  峰:主要是因为我的两位导师。其中一位是鄂维南老师,他是应用数学家。鄂老师给我最核心的insight是机器学习能解决维数灾难问题。

  我本科毕业刚刚去普林斯顿的时候,其实做了非常多的纯理论的探索,量子计算、量子场论等等。在找科研方向的时候有一句话是共振程度最高的,是杨振宁说的the party is over,找不到令人振奋的方向了。(注:杨振宁在1980年就认为,高能物理的黄金时代已经过去,未来的发展将不会像过去那样频繁地出现重大发现和理论突破。)

  那时候鄂老师直接劝我不要再继续上课了,尽管普林斯顿有很多菲尔兹奖、诺贝尔奖得主的课程,重学一遍也挺开心的。但我理解他的意思是:上课只会满足你的虚荣心,你80%都会了然后上去再会一点,并不是在定义重要问题。

  峰:鄂老师劝我关注机器学习。科学界大量的问题,无论是微观的还是宏观的,很多都卡在了所谓的维数灾难。而机器学习在数学上,恰好给我们提供了高维复杂函数的表示能力。

  比如AI处理图像,以一个32乘32像素的图像为例,算上RGB的三个值,那有3000多个数字作为输入,然后输出的画面就是猫或者狗或者别的。这个事儿我们现在去看好像挺自然,但事实上从数学建模的角度来讲,是非常反直觉的,至少是反一代数值算法科学家的经验和直观的。

  峰:每个领域的人对AI的认知是不同的,正是因为这些差异,让我们产生了碰撞,去探索AI为科学计算所带来的新可能。

  世界上本来就不存在学科,以前分学科是为了教育方便。过去因为方法能力的限制,各个尺度下面的不同场景已经被四分五裂到不同的学科。而现在我们有了一个统一的工具,也就是AI,能表示所有的复杂高维函数,那我们可以带着一个全新的视角把所有的东西都重新审视一遍。

  峰:另一位导师Roberto Car是计算化学家,是第一性原理分子模拟的祖师爷,而第一性原理分子模拟恰好受限于维数灾难。比如他在2016年用超算做了一个很简单的模拟,模拟64个水分子,运动10皮秒(1皮秒是10的-12次方秒),这个模拟用了两亿个核时。即使放到今天成本可能也要一两千万人民币。

  而如果我们把这个东西拿AI一学,然后用来做模拟,模拟的分子数大10倍,时间长10倍,用你这个笔记本跑一天就可以了。

  64个水分子的模拟,我是在去美国的飞机上跑通的。当时在飞机上用笔记本插着电跑,跑完之后出来的结果跟Roberto Car的模拟互相重叠,我甚至以为抄错数据了。下飞机以后我发给鄂老师写了一个邮件说了这件事。